
NASA-CR-_90644

: j-

Object Links in the Repository

................ =,= ........-Jon Beck

David Eichmann

West Virginia University Research Corporation

/Iv _6 2_-<_:ia_.

//_-//.2._

/./j
9/27/91

_ .;

_D
0,

0 N

Z _ 0

Z "_

Z _.. C
N_ O f_

wEO
"_ ,,.

,wOE

O_ I.- _._ t-
P_'_ 0

I C_ .l_ ,,.,

t W_E

Z_o_ ¢"

Cooperative Agreement NCC 9-16

Resea_YActivity No. SE.43

NASA Johnson Space Center

Informat_stems Directorate

lnformat_o_Technology Division

'-- Research Institute for Computing and Information Systems
.......... =,

...... : _ ::....____._._ _:__._:.._ University of Houston-C/ear Lake

INTERIM REPORT

' _--- -_:-: _ ½:ki iklii ? - ............ :..7 .....



The RICIS Concept

The University of Houston-Clear Lake establJshed the Research Institute for

Computing and Info_atlon Systems (RICIS} in 1986 to encourage the NASA

Johnson Space Center (JSC} and local industry to actively support research

In the computing and irfformation sciences. As part of this endeavor, UHCL

proposed a partne_htp with JSC to Jointly define and manage an integrated

program of research in advanced data processing technology needed for JSC's

main missions, including administrative, engineering and science responsi-

bilities. JSC agreed and entered into a continuing cooperative agreement

with UHCL beginning in May 1986, to Jointly plan and execute such research

through RICIS. Additionally, under Cooperative Agreement NCC 9-16,

computing and educational facilities are shared by the two institutions to
conduct the researeh-

The UHCL/RICIS _6n is to conduct, coordinate, and disseminate research

and professional level education in computing and information systems to

serve the needs of the government, industry, community and academia-

RICIS combines re so _tu2zces of UHCL and its gateway affiliates to research and

develop materials, prototypes and publications on topics of mutual Interest

to its sponsors _d researchers. Within UHCL, the mission is being

implemented throu_ interdisciplinary involvement of faculty and students
from each of the four schools: Business and Public Administration, Educa-

tion, Human Sciences and Humanities, and Natural and Applied Sciences.

RICIS also collaborates with industry in a companion program. This program

is focused on se_g the research and advanced development needs of

industry.

Moreover, UHCL es_bllshed relationships with other universities and re-

search organizations, having common research interests, to provide addi-

tional sources ofe_erUse to conduct needed research. For example, UHCL

ham entered into a special partnership with Texas A&M University to help

oversee RICIS _h_an4 education programs, while other research

organizations are involved via the "gateway" concept.

A major role of RICIS then Is to find the best match of sponsors, researchers

and research objectives to advance knowledge in the computing and informa-

tion sciences. RICIS, working Jointly with its sponsors, advises on research

needs, recommends principals for conducting the research, provides tech-

nical and admlnis_five support to coordinate the research and integrates

technical results ___to__the goals of UHCL, NASA/JSC and industry.



RICIS Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Ion Beck and Dr. David Eichmann of West

Virginia University. Dr. E. T. Dickerson served as RICIS research coordinator.

Funding was provided by the Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Ernest M. Fridge, III of the Information

Technology Division, Information Systems Directorate, NASA/JSC.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either express

or implied, of UHCL, RICIS, NASA or the United States Government.



SoRReL
Software Reuse Repository Lab

Object Links in the Repository

Interim Report

Jon Beck & David Eichmann

Software Reuse Repository Lab
Dept. of Statistics and Computer Science

West Virginia University
Morgantown, WV 26506

SoRReL - RBSE - 91 - 1

September 27, 1991



Object Links in the Repository

Interim Report"

Jon Beck & David Eichmann

1. Introduction

This interim report explores some of the architectural ramifications of extending the Eich-

manrdAtldns lattice-based classification scheme [1] to encompass the assets of the full life-cy-

cle of software development. In particular, we wish to consider a model which provides explicit

links between objects in addition to the edges connecting classification vertices in the standard

lattice.

The model we consider here uses object-oriented terminology [3, 4]. Thus the lattice is

viewed as a data structure which contains class objects which exhibit inheritance.

This report contains a description of the types of objects in the repository, followed by a dis-

cussion of how they interrelate. We discuss features of the object-oriented model which support

these objects and their links, and consider behaviors which an implementation of the model

should exhibit. Finally, we indicate some thoughts on implementing a prototype of this reposi-

tory architecture.

2. A Bestiary of Objects

The repository is designed to contain the full set of assets created during the software life-

cycle. Therefore, there are many types of objects we wish the repository to contain. Listed be-

low are some obvious candidates for inclusion in the repository. This is an open list, indicative

but not exhaustive. Extensibility of the system, a strength of faceted classification, is a neces-

sity.

* This work is supported in part by NASA subcontract 089, cooperative agreement NCC-9-16, project no.

RICIS SE.43.



Our discussionu_esasimplified waterfalllife-cycle modelsolely for the purposes of illus-

tration. Our choice of models for this report was made on the basis of reaching the most general

audience, rather than upon the suitability of any particular modeling technique. The arguments

presented below apply equally well to any such technique.

2,1 Reauirements

A repository containing the assets of a full life-cycle of some software development project

will contain one or more requirements documents or requests for proposal which delineate the

need which the software met. These documents will be written in human text (possibly with dia-

grams and figures) but will refer to functionality provided by code.

2.2 Soecifications

Based on the requirements, there will be specifications documents, also written in human

text. These documents describe the architecture of a software system which will provide the

functionality demanded in the requirements. Code is written based upon the architecture which

the specifications provide.

2.3 Code

Code is the central category type for the repository. While all the other objects are necessary

to a fully functioning repository, code is the repository's focus, and the main attraction for users.

In the prototype stage we concentrate on the Ada language, but extensible support for other

languages is essential. Given a grammar or specification for a language, the repository structure

must be able to accommodate code in that language.

2.4 Validation and Acce0tance Documents. Test Data

After the software has been coded, the development team bears the burden of proving that it

meets the requirements and follows the specifications. There can be textual descriptions of how

the requirements are satisfied. There can also be files of test input data or script files which dem-

onstrate test cases. There may be files of output data captured to show compliance with the



specifications.Theremaybecaveatslisting limitationsor implementationdependencies.All of

thesereferbackto therequirements,specifications,andactualcodeof thesoftwaresystem.

2.5 Versions

All of the above assets may exist in the repository in multiple versions. Version 2.0 of a

word processor is very similar to, but distinct from, version 2.1, and it is valid for both versions

to exist in the repository. This means that all assets of that word processor package, from re-

quirements to acceptance report, may exist in multiple versions. There could also be a Differ-

ences document relating one version to the next, which belongs to two versions.

3. Object Granularity

The repository will contain not just code, but code at a number of different levels of granu-

larity. For example, a repository object might be a word processor, available for retrieval as a

complete word processing module. But embedded within that package are many other code ob-

jects. There might be a queue package for input buffering, which in turn contains a linked list

package. The search-and-replace module is an object, but from it can be generated two separate

submodules by the technique of program slicing [2, 7], the search submodule and the replace

submodule. Each of these is a repository object in its own right, separately retrievable via a

query on its own classification.

Similarly, a specifications document for the word processor will exist. But within that docu-

ment are one or more sections detailing the specification for the search-and-replace module.

A title of test data may be input which exercises the entire package, or it may be input for

testing only a very small functional piece of the system. For example, a file containing mis-

spelled words for ensuring that the spell checker functions correctly may have nothing to do with

testing the printer output module of a word processing package. However, the file of misspelled

words properly resides in the repository as a member of the comprehensive test suite.

-3-



Every largeobject in the repository may contain or be composed of smaller objects also in

the repository in their own right. Conversely each small object may be not only a valid reposi-

tory object but also a constituent of a larger asset.

The issue here is one of complex structure; we use a canonical notion of a document to illus-

trate the concepts. Consider the general concept of a document with a fixed structuring scheme

(sections, subsections, paragraphs, and sentences) as shown in figure 1. Any given document

Document Title

Section Header

Subsection Header

I Paragraph

Paragraph

Subsection Header

I Paragraph

I Paragraph

Section Header

I Paragraph

I Paragraph

I Paragraph

Figure 1. A Sample Document

-4-



contains an arbitrary number of sections, which in turn contain an arbitrary number of subsec-

tions, and so on.

Every large object in the repository may contain or be composed of smaller objects also in

the repository in their own right. Conversely each small object may be not only a valid reposi-

tory object but also a constituent of a larger asset.

The model includes the definition of the limits of granularity. In the prototype presented

here, a Document, the coarsest level, contains successively finer objects, down to paragraphs,

the finest level. The document class definition limits the number of granularity levels. For code,

a recursively defined class, there is no fixed number of granularity levels. Every bona fide block

in the code, no matter how deeply nested, is a repository object at its own level of granularity.

Thus the reference given in section 2.1 for the language's specification to allow parsing code

into its block structure.

We do not imagine, however, that each lowest-level object will be replicated in every

coarser object of which it is a constituent part. A paragraph will not be replicated in every sub-

section, section, and document which contains it. Rather, the larger-grained objects will contain

references to the finer-grained ones, references which are transparent to the user. In object-ori-

ented terminology, the larger-grained objects are composite. More exactly, the references from

coarse- to fine-grained objects are shared independent composite references. The reference

from a word processing system to one of its constituent string packages is a shared reference be-

cause the string package may be contained in more than one parent object. The reference is also

independent because the existence of the string package does not depend on the existence of the

word processing system. We might decide that the word processing system is of no further use

in the repository and delete it, but retain the string package on its own merit.

-5-



4. Object Links

As outlined above, there are many objects which will reside in the repository. It is obvious

that there are many relationships among them. A spell checker code module is related across

granularity levels up to the word processing package which contains it and down to the buffer

package it contains. It is related across life--cycle phases, back to the specifications section

which discusses spell checking functionality and forward to the verification test of the spell

checker module. It is related across versions of the software back to its predecessor and forward

to its successor.

A person browsing in a conventional library has only one dimension by which to follow

links to find related books. From a book of interest, the browser can search left or right along the

shelf to try to find related works. But our repository has the ability to provide many dimensions

of links to related objects. The basic lattice structure provides two mechanisms for browsing for

related objects, relaxation of facet values in queries and use of closeness metrics which produce

queries containing conceptually similar or related terms.

In addition to these, the data structure of the objects in the lattice should allow the inclusion

of explicit links along all the dimensions given above. These links connect related objects and

must be available to the browser as a means to identify objects related along the axes of granu-

larity, life--cycle phase, and version. All repository object links are bidirectional and reflexive.

They may be one-to--one, one-to-many, or many-to-many.

The combination of a rich linking structure within a lattice framework produces the potential

for an extremely powerful interface mechanism. Traditional relational query systems can only

retrieve data blindly, with no notion of their location in the database. Most current object--ori-

ented systems provide only navigational access to data, with limited querying ability. Our model

provides full query access to any node in the lattice through the facet-tuple mechanism. But our

model also provides full navigational access via the object structure with its cross links. With

-6-



thiscombinationof declarativequeriesandproceduralnavigation,it is thuspossiblefor theuser

to browsethroughtheentirerepositoryfinding andpinpointingtheexactobjectof interest.

Object-orienteddatabasesystemssupportour link conceptsthroughobject identity. A re-

flexive relationship implies that the parties (i.e., objects) to the relationship store the identity (or

identities) of the objects to which they relate. This is very similar, but not exactly equivalent, to

the concept of pointers in more traditional programming languages.

4.1 Ph_e Links

Phase links are those which join one object in the lattice to another object which is related by

virtue of being the "same" object at a different phase of the life cycle. This type of link joins, for

example, a requirement to its embodiment as a specification, and then similarly on to its imple-

mentation in code.

There must be a link not only between the word processor's specification document and the

word processing code, but also between the section of the specification which treats of the

search-and-replace function and the code module which implements that functionality.

Figure 2 illustrates the duality of reference between the various artifacts in the life cycle. A

requirements document has as its specification some design document (a one-to-one relation-

ship); that same design document in turn was specified by the requirements document. A given

design document may specify aspects of multiple programs (illustrating a one-to-many relation-

ship).

4.2 Granularity Links

Granularity links are those which join objects across granularity levels. This type of link

joins, for example, a section in a document is linked to the paragraphs it contains, and also to

the chapter which contains it. Similarly, in source code, a search program slice has links to the

search-and-replace module from which it was derived via slicing.

-7-



Program

Requirements Design Program
Document Document

Program

Figure2. LinkageBetweenObjectsfrom Differing Phases

Thetransitionfrom ourconceptualmodelof adocumentasillustratedin figure 1to theob-

ject modelof adocumentasillustratedin figure 3 exemplifiestherepresentationof complex

structurein object--orientedsystems.

Title
Document [ Paragraph !

Section

Subsection

Paragraph ]

Title

Subsection [

Figure 3. The Granularity References for a Portion of Figure 1

Hence, a document is a title and an ordered collection of sections. A section is a title and an

ordered collection of subsections, and so on. Object identity implies that the document does not

actually contain all of its nested components, but rather it contains references to them (effec-

tively pointers to the other objects).

-8-



4.3 Version Links

If versions are added to the repository, a new dimension is added. In this dimension there

are links from an object forward to a later version or backward to a previous version of the same

object concept. These links are orthogonal to the phase links between objects in the same pro-

ject. It is possible, however, that the version relationship is not as simple as lineal descendancy.

Rather, the versions of an object may form a directed acyclic graph, as shown by the bold lines

in figure 4, designating the derivation of version 2 from version 1, and the derivation of version

3 from both version 1 and version 2. Any number of new versions may be derived from one or

more existing versions. In other words, versioning can exhibit all the characteristics of temporal

inheritance.

Conceptual
Document Document

version 1

Document

version 2

Document

version 3

Figure 4. A Sample Multiple-Version Document

The set of versions for some document artifact in the life cycle is just a labeled association,

with the version number acting as label for a specific instance of a document object. This leads

to the distinction between a conceptual document and a document version. A conceptual docu-

ment contains the named associations comprising the various versions, each of which are docu-

ments in their own right, as shown in figure 4.

Note that any given object can be referenced by any number of other objects, so that it is

quite reasonable for a given section to appear unchanged in multiple versions of a document.

This is accomplished by storing the identity of the section in each of the documents' respective

ordered sequence of sections.



5. The Model

The above sections describe an architecture for a lattice-based faceted repository of life--cy-

cle assets. Many of the features of this architecture are couched in object-oriented terms. We use

these terms because the object-oriented paradigm provides semantics closer to the abstract con-

cept we are trying to model than any other yet developed. Use of object-oriented terminology

and concepts, therefore, leads us directly into the use of an object-oriented data model for de-

signing the data structures of the lattice.

The conceptual structure of the repository is a lattice, demanding an object-oriented model

which explicitly includes multiple inheritance. As depicted schematically in figure 5 and tex-

tually in figure 6, the fundamental superclass of the lattice is the LatticeNode class. The two sub-

classes of LatticeNode are FacetNode and TupleNode, corresponding to the node types in the

Facet and Tuple sublattices as explained in [1].

Object

Figure 5. The Class Hierarchy

The Tuple sublattice contains the references to the items actually stored in the repository. An

instance of TupleNode contains the attribute set of RepositoryElement to accomplish this. In our

simplified example, a RepositoryElement is a class with only two subclasses, Document and

Code. In a full repository implementation there would be other subclasses for storing test data

and make scripts, for instance.

- 10-



LatticeNode
set of LatticeNode -- parents
set of LatticeNode -- children

FacetNode : subclass of LatticeNode
set of FacetValue

TupleNode :subclass of LatticeNode
set of FacetNode
set of RepositoryElement

RepositoryEiement
ObjectTitle
ObjectVersion
ObjectAuthor
ObjectDate
...other attributes

Document : subclass of RepositoryElement
...other attributes
set of SectionObject -- constituent items
set of FigureObject -- constituent items

Section
SectionHeader
SectionNumber
set of Document-- parents
set of Subsection m constituent items

Subsection
SubsectionHeader
SubsectionNumber
set of Section -- parents
set of Paragraph--- constituent items

Paragraph
ParaNumber: Integer
set of Subsection -- parents
ParaText: String

Code : subclass of RepositoryElement
CodeLanguage
...other attributes
set of CodeElement -- constituent items

CodeElement
set of Code -- parents
set of Declarations
set of Statements

Figure 6. The Class Definitions

-11-



The RepositoryElement class defines attributes of general interest such as Title, Author, Ver-

sion, Date. These attributes constitute general metadata about repository object which would be

displayed to the user. The subclasses Document and Code have further attributes which are spe-

cific to their types. For example, a Document instance might contain a Drawing, whereas a piece

of Code would have a ProgrammingLanguage.

As explained in Section 3, a Document in the repository is not atomic but is composed of

instances of the classes Section, Subsection, etc. Each of these classes is an object defined with

its own appropriate attributes. Similarly a Code instance contains (3odeElement instances.

The encapsulation feature of the object-oriented paradigm makes this model easily extensi-

ble. For example, if in the future we added to the repository a sound processing program which

required a digitized audio score as an initialization file, the requisite class definition of that ob-

ject could be added to the schema with no disruption of the current existing def'mitions.

6. Future Work

We have identified the major objects which will reside in the repository and we have pro-

posed an object--oriented data model for our lattice. With this model it is possible to capture the

abstract concept of a static lattice repository which exhibits inheritance among its objects and

many complex linkages between them. This model also provides for the encapsulation of the

functions which allow navigation between and display of the objects in the repository.

We now intend to examine a number of commercial and experimental object--oriented data-

base management systems to determine the feasibility of implementing this model. The result of

this examination should be a prototype of ASV4, the full life--cycle reuse repository. We antici-

pate that this prototyping phase will generate considerable feedback for refining and fine-tuning

the object-oriented data model.

- 12-



Particularareasthatwarrantfurtherexaminationinclude:

>- therole of methods(mechanismsthat implementbehavior)in thepresentation

of andnagivationthroughttherepositoryandits contents;

thetiesbetweenanobject-orientedmodelof therepositoryanda hypermedia

representationof therepository;and

theassistanceanobject--orientedmodelof therepositorycanprovidein qual-

ity assessment[5,6].

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Eichmann, D. A. and J. Atldns, "Design of a Lattice-Based Faceted Classification Sys-

tem," Second International Conference on Software Engineering and Knowledge Engi-

neering, Skokie, IL, June 21-23, 1990, pages 90--97.

Gallagher, K. B. and J. R. Lyle, "Using Program Slicing in Software Maintenance,"

IEEE Transactions on Software Engineering, vol. 17, no. 8, August 1991, pages
751-761.

Kim, W., Introduction to Object-Oriented Databases, MIT Press, Cambridge, MA,

1990.

Meyer, B., Object-Oriented Software Construction, Prentice-Hall, New York, NY,
1988.

SofTech, Inc., A Research Review of Quality Assessment for Software, AdaNet Report

ADANET-FD-R&T-086--0, April 30, 1991.

SofTech, Inc., A Quality Assessment Trade Study, AdaNet Report ADANET-

FD-R&T--086--0, July 12, 1991.

Weiser, M., "Program Slicing," IEEE Transactions on Software Engineering, vol.

SE-10, no. 4, July 1984, pages 352-357.

- 13-


